An error occurred on this page.
These results could be incomplete or invalid. Staff have been notified.



Project measure / variable:   Odet2   sperm_ALH_90

ID, description, units MPD:53878   sperm_ALH_90   sperm mean lateral head displacement (amplitude)   [µm]  at 90 min  
Data set, strains Odet2   inbred w/CC8   8 strains     sex: m     age: 10-66wks
Procedure microscopy
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Odet2 - sperm mean lateral head displacement (amplitude) at 90 min



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means15.6   µm
Median of the strain means15.8   µm
SD of the strain means± 2.82
Coefficient of variation (CV)0.180
Min–max range of strain means10.2   –   19.0   µm
Mean sample size per strain13.1   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 687.4814 98.2116 24.0445 < 0.0001
Residuals 97 396.2037 4.0846


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 15.3 1.88   16 0.47 0.123 12.0, 18.3 -0.12
A/J m 15.4 2.01   14 0.537 0.13 12.5, 18.7 -0.08
C57BL/6J m 13.7 1.47   11 0.443 0.107 10.8, 15.1 -0.69
CAST/EiJ m 10.2 1.11   12 0.32 0.108 8.9, 12.3 -1.93
NOD/ShiLtJ m 16.7 2.24   10 0.708 0.134 11.6, 19.3 0.38
NZO/HlLtJ m 16.1 1.2   15 0.31 0.0745 13.9, 18.2 0.16
PWK/PhJ m 19.0 2.4   13 0.665 0.126 15.3, 23.8 1.19
WSB/EiJ m 18.7 3.05   14 0.816 0.163 13.4, 24.5 1.09


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 15.2875 0.5053 16.2903 14.2847
A/J m 15.4429 0.5401 16.5149 14.3708
C57BL/6J m 13.6727 0.6094 14.8821 12.4633
CAST/EiJ m 10.25 0.5834 11.4079 9.0921
NOD/ShiLtJ m 16.71 0.6391 17.9785 15.4415
NZO/HlLtJ m 16.1333 0.5218 17.169 15.0976
PWK/PhJ m 18.9923 0.5605 20.1048 17.8798
WSB/EiJ m 18.7286 0.5401 19.8006 17.6565




  GWAS USING LINEAR MIXED MODELS