An error occurred on this page.
These results could be incomplete or invalid. Staff have been notified.



Project measure / variable:   Odet2   sperm_VAP_10

ID, description, units MPD:53855   sperm_VAP_10   sperm mean path velocity   [µm/s]  at 10 min  
Data set, strains Odet2   inbred w/CC8   8 strains     sex: m     age: 10-66wks
Procedure microscopy
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Odet2 - sperm mean path velocity at 10 min



  MEASURE SUMMARY
Measure Summary Male
Number of strains tested8 strains
Mean of the strain means126   µm/s
Median of the strain means120   µm/s
SD of the strain means± 30.7
Coefficient of variation (CV)0.243
Min–max range of strain means91.5   –   172   µm/s
Mean sample size per strain14.5   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 7 97433.8894 13919.1271 22.322 < 0.0001
Residuals 108 67344.6405 623.5615


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ m 108.0 15.8   17 3.84 0.147 82.8, 141.0 -0.59
A/J m 123.0 29.5   17 7.16 0.239 55.1, 163.0 -0.1
C57BL/6J m 91.5 13.8   11 4.16 0.151 67.8, 110.0 -1.13
CAST/EiJ m 98.5 14.6   12 4.22 0.148 82.0, 126.0 -0.9
NOD/ShiLtJ m 125.0 28.4   10 8.98 0.227 68.4, 166.0 -0.03
NZO/HlLtJ m 118.0 19.2   16 4.81 0.163 74.5, 143.0 -0.26
PWK/PhJ m 172.0 14.9   15 3.84 0.0865 141.0, 193.0 1.5
WSB/EiJ m 172.0 41.5   18 9.77 0.241 39.4, 225.0 1.5


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ m 107.8 6.0564 119.8049 95.7951
A/J m 123.3529 6.0564 135.3578 111.3481
C57BL/6J m 91.4818 7.5291 106.4058 76.5578
CAST/EiJ m 98.45 7.2086 112.7386 84.1614
NOD/ShiLtJ m 125.21 7.8966 140.8624 109.5576
NZO/HlLtJ m 117.8063 6.2428 130.1806 105.4319
PWK/PhJ m 171.78 6.4475 184.5601 158.9999
WSB/EiJ m 171.8056 5.8858 183.4722 160.1389




  GWAS USING LINEAR MIXED MODELS