An error occurred on this page.
These results could be incomplete or invalid. Staff have been notified.



Project measure / variable:   Taft1   pct_implant_frozen

ID, description, units MPD:19333   pct_implant_frozen   implant sites (early resorption), percentage of frozen/thawed ET   [%]  
Data set, strains Taft1   inbred   9 strains     sex: f
Procedure assisted reproduction
Ontology mappings

  STRAIN COMPARISON PLOT
Dimensions Width:   px    Height:   px
Download Plot   
Visualization Options

Taft1 - implant sites (early resorption), percentage of frozen/thawed ET



  MEASURE SUMMARY
Measure Summary Female
Number of strains tested9 strains
Mean of the strain means28.7   %
Median of the strain means27.3   %
SD of the strain means± 6.42
Coefficient of variation (CV)0.224
Min–max range of strain means20.2   –   38.6   %
Mean sample size per strain12.0   mice


  ANOVA, Q-Q NORMALITY ASSESSMENT
ANOVA summary      
FactorDFSum of squaresMean sum of squaresF valuep value (Pr>F)
strain 8 4210.3697 526.2962 0.995 0.4449
Residuals 97 51305.0643 528.9182


Q-Q normality assessment based on residuals

  


  STRAIN MEANS (UNADJUSTED)
  
Select table page:
Strain Sex Mean SD N mice SEM CV Min, Max Z score
129S1/SvImJ f 22.1 17.3   16 4.34 0.786 -1.03
BALB/cByJ f 31.8 26.1   14 6.97 0.821 0.48
BALB/cJ f 37.7 18.6   3 10.7 0.494 18.0, 55.0 1.4
C3H/HeJ f 29.9 19.9   8 7.03 0.666 0.19
C57BL/6J f 25.5 20.9   11 6.29 0.82 -0.5
DBA/2J f 20.2 18.7   13 5.18 0.924 -1.33
FVB/NJ f 38.6 30.1   19 6.91 0.78 1.54
NOD/ShiLtJ f 25.3 20.7   19 4.76 0.819 -0.53
SJL/J f 27.3 30.4   3 17.5 1.11 -0.22


  LEAST SQUARES MEANS (MODEL-ADJUSTED)
Strain Sex Mean SEM UpperCL LowerCL
129S1/SvImJ f 22.0625 5.7496 33.4738 10.6512
BALB/cByJ f 31.7857 6.1465 43.9849 19.5865
BALB/cJ f 37.6667 13.278 64.0199 11.3135
C3H/HeJ f 29.875 8.1311 46.013 13.737
C57BL/6J f 25.4545 6.9342 39.2171 11.692
DBA/2J f 20.2308 6.3786 32.8904 7.5711
FVB/NJ f 38.6316 5.2762 49.1033 28.1599
NOD/ShiLtJ f 25.3158 5.2762 35.7875 14.8441
SJL/J f 27.3333 13.278 53.6865 0.9801




  GWAS USING LINEAR MIXED MODELS